
Preprint 
UCRL-JC-145746 

US.  Department of Energy Netherlands, May 29-31, 2000 

Mu It i resol ut ion 
Techniques for Interactive 
Text u re-Based Rendering 
of Arbitrarily Oriented 
Cutting Planes 

E. LaMar, M.A. Duchaineau, B. Hamann, K.I. Joy 

This article was submitted to 
VisSym 1 00 Joint Eurographics Institute for Electrical and Electronic 
Engineers TCVG Symposium on Visualization, Amsterdam, The 

Approved for public release; further dissemination unlimited 



DISCLAIMER 

This document was prepared as an account of work sponsored by an agency of the United States 
Government. Neither the United States Government nor the University of California nor any of their 
employees, makes any warranty, express or implied, or assumes any legal liability or responsibility for 
the accuracy, completeness, or usefulness of any information, apparatus, product, or process disclosed, or 
represents that its use would not infringe privately owned rights. Reference herein to any specific 
commercial product, process, or service by trade name, trademark, manufacturer, or otherwise, does not 
necessarily constitute or imply its endorsement, recommendation, or favoring by the United States 
Government or the University of California. The views and opinions of authors expressed herein do not 
necessarily state or reflect those of the United States Government or the University of California, and 
shall not be used for advertising or product endorsement purposes. 

This is a preprint of a paper intended for publication in a journal or proceedings. Since changes may be 
made before publication, this preprint is made available with the understanding that it will not be cited 
or reproduced without the permission of the author. 

This report has been reproduced directly from the best available copy. 

Available electronically at , . v  

Available for a processing fee to U.S. Department of Energy 
And its contractors in paper from 

U.S. Department of Energy 
Office of Scientific and Technical Information 

P.O. Box 62 
Oak Ridge, TN 37831-0062 
Telephone: (865) 576-8401 
Facsimile: (865) 576-5728 

E-mail: reDorts&adon is.osti. pov 

Available for the sale to the public from 
US. Department of Commerce 

National Technical Information Service 
5285 Port Royal Road 
Springfield, VA 22161 

Telephone: (800) 553-6847 
Facsimile: (703) 605-6900 

Online ordering: httD:/ /www.ntis.~ov/orderinp.h 
E-mail: prdersChtis 

OR 

Lawrence Livermore National Laboratory 
Technical Information Department’s Digital Library 

http://www.llnl.gov/ tid/Library.html 

http://www.llnl.gov


Multiresolution Techniques for Interactive 
Texture-based Rendering of Arbitrarily Oriented 

Cutting Planes 

Eric LaMar* 
Mark A. Duchaineau*, Bernd Hamann*, Kenneth I. Joy* 

Center for Image Processing and Integrated Computing 
Department of Computer Science 

University of California, Davis, CA 95616-8562, USA 

Center for Applied Scientific Computing 
Lawrence Livermore National Laboratory 

Box 808, L-561 Livermore, CA 94551, USA 

Abstract. We present a multiresolution technique for interactive tex- 
ture based rendering of arbitrarily oriented cutting planes for very large 
data sets. This method uses an adaptive scheme that renders the data 
along a cutting plane at different resolutions: higher resolution near the 
point-of-interest and lower resolution away from the point-of-interest. 
The algorithm is based on the segmentation of texture space into an 
octree, where the leaves of the tree define the original data and the 
internal nodes define lower-resolution versions. Rendering is done adap  
tively by selecting high-resolution cells close to a center of attention and 
low-resolution cells away from it. We limit the artifacts introduced by 
this method by blending between different levels of resolution to pro- 
duce a smooth image. This technique can be used to produce viewpoint- 
dependent renderings. 

1 Introduction 

Computing technology has steadily improved for more than four decades and 
continues to improve rapidly. These increased computing capabilities have en- 
abled applications to scale accordingly in overall throughput and resulting data 
set sizes. However, current visualization techniques break down when operating 
in this environment due to the massive size of the data sets. New techniques are 
necessary to enable exploration of large multidimensional data sets. 

In this paper, we combine hardwareassisted texture mapping and multires- 
olution methods for rendering cutting planes of large volumetric data sets. The 
general idea is to assign priorities to different regions of the volume and to render 
the high-priority regions with highest accuracy, while lower-priority regions are 
rendered with progressively less accuracy, and progressively faster. 

* eclamar@cipic.ucdavis .edu , duchaine@llnl.gov, { hamann, joy} @Ics.ucdavis.edu 

mailto:duchaine@llnl.gov
mailto:Ics.ucdavis.edu


We use an octree to decompose texture space producing several coarser levels 
of the original data set. Each level is associated with a level in the octree and 
each level is half the resolution of the next level. The leaf nodes are associated 
with the original resolution, and the root node is associated with the coarsest 
resolution. Interior nodes are created by subsampling the eight child nodes. Each 
node contains two texture tiles, called high and low. The high tile stores the 
node’s copy of the data; the low tile stores portion of the parent’s high tile that 
covers the same area as the node. 

Rendering a cutting plane involves traversing the octree and applying a selec- 
tion filter to each node, building a selected node tree. Three results are possible: 
(1) the node (and its children) are skipped entirely; (2) the node is skipped, but 
its children are visited; or (3) the node is rendered and the children are skipped. 
The selected node tree forms an incomplete octree with the leaves being the 
nodes selected for rendering. The second step is to balance the selected node 
tree: all adjacent nodes must differ by no more than one level of resolution. The 
final step is to render each node, blending the high and low tiles when the node 
is adjacent to a lower-resolution node. 

This technique reduces the amount of data accessed to produce a rendering. 
This is important in data mining or visual steering applications, where a user 
does not know the point-of-interest or would just like to browse the data. An- 
other application is progressive visualization: often, a data set is too large to 
be placed on one computer system, and portions are distributed across a net- 
work of machines. It is not always practical to wait for all systems to finish 
rendering. With our technique, an initial approximation is first rendered. As 
higher-resolution data is received, a higher-quality approximation is rendered. 
This continues until all the data is received or the user changes viewing param- 
eters. 

Section 2 contains a survey of related work. Section 3 discusses construction of 
the texture hierarchy, and Section 4 covers how to process and render the texture 
hierarchy. Section 5 shows results for two data sets and provides performance 
results. Conclusions and future work are presented in Section 6. 

2 Related Work 

High-performance computer graphics systems are evolving rapidly. Silicon Graph- 
ics, Inc. (SGI) has been a primary developer of rendering technology, introducing 
the RealityEngine graphics system [l] in 1994 and the InfiniteReality graphics 
system [SI in 1998. SGI has also provided extensions to OpenGL [9], [7] that 
allow taking advantage of this hardware. 

Cabral et al. [2] show that volume rendering and reconstruction integrals 
are generalizations of the Radon and inverse Radon transforms. They show that 
the Radon and inverse Radon transforms have similar mathematical forms and, 
by developing this relationship, show that both volume rendering and volume 
reconstruction can be implemented with hardware-accelerated textures. Cullip 
and Neumann [3] discuss general implementation issues for hardware-assisted 



texture-based volume visualization and illustrate the superiority of viewport- 
versus object-aligned sampling planes. Wilson et al. [l3] and Van Gelder and 
Kim [ll] develop the mathematical foundation for generating texture coordi- 
nates. Van Gelder and Kim also introduce a quantized gradient method for in- 
teractive shading for volume visualization. Westermann et al. [12] show how to 
visualize isosurfaces using fragment testing and discuss a technique to shade the 
texture-based isosurfaces. Grzeszczuk et al. [5] enumerate many methods using 
hardware-accelerated texturing to provide interactive volume visualization, and 
they introduce a library for texture-based rendering called Volumizer [4]. 

LaMar et al. [SI discuss techniques on which this work is based. This paper 
[SI shows that multiresolution techniques, when applied to large data sets and 
used for volume rendering applications, are a reasonable approach to reducing 
both rendering time and amount of data rendered. Shen et al. [lo] discuss a 
temporally based multiresolution scheme for volume visualization of unsteady 
data sets. 

Our method differs from these prior approaches in that we allow adaptive 
rendering of a cutting plane. Prior algorithms assume that a data set is ‘hi- 
formly complex” or ‘hiformly important.” This is not the case in an immersive 
environment, where data closer to the viewer has more visual importance than 
data far away. Our method of rendering tiles at different resolutions enables us to 
treat quality as a ‘%unable” parameter. Artifacts that may appear are removed 
by blending higher-resolution nodes into lower-resolution nodes. 

3 Generating The Texture Hierarchy 

3.1 HighlLow Texture Tiles 

Fig. 1. A node with one-dimensional tiles, high(H) and Iow(L). 

In hardware texturing, linear interpolation is used to interpolate the values 
at the centers of adjacent texels. To allow for blending within a node, each 
node contains two texture map tiles (Figure 1). The high tile is the normal 
data associated with that node. The low tile is that part of the parent’s high 
tile that is covered by the child node. The size ratio high to low is defined as 
lhighl = lZowl* 2 - 1. Thus one of the tiles must have odd size. If the size of 
a texture tile must be a power of two, then this relationship will incur some 
memory overhead. Our system uses a power-of-two size for the low tile, and the 
size for the high tile is calculated accordingly. 







two images, we can change the polygon color to implement bilinear filtering. In 
Figure 4, image (G) is created by performing a per-pixel affine combination of 
images (A) and (D). Image (B), with ratios of a = c = 1 and b = d = 0, multiplies 
(A) and produces (C). Image (E) multiplies (D) and produces (F). Images (B) 
and (E) sum to unity. Adding (C) and (F) produces (G): a transition from red 
checks on the left to green checks on the right. We obtain a smooth transition 
provided (A) and (D) are two different resolutions of the same image. 

4.3 Neighborhoods and "Balancingyy 

The blending algorithm described in section 4.2 requires that all selected nodes 
in a 26-neighborhood (across node faces, edges, and corners) have resolutions 
that differ by at most one level in the octree. Blending within a node can only 
blend between two texture resolutions: the high-resolution texture is blended 
into the low-resolution texture. Nodes have two textures tiles, high and low, so 
that a pair of nodes that differ by one level in the tree can be blended. Those that 
differ by two or more levels do not share any textures and cannot be blended. 

After balancing the tree, we examine the neighbors of all selected nodes. 
The nodes adjacent to a node of lower-resolution must be blended such that the 
textures match. For each corner of a given node, when any of the seven adjacent 
nodes exist and have a lower-resolution, that corner must blend to the low tile; 
otherwise, it must use the high tile. 

Fig. 5. Cutting plane clipped to an intersecting node. 

Figure 5 shows a cutting plane clipped to an intersecting node. A to H are 
the blend ratios associated with the node: corners B, E, and H are adjacent to 
lower-resolution nodes, so that the blend ratio is one; the other corners have a 
blend ratio of zero, selecting the low and high tile of the node, respectively. The 
values a to e are the blend ratios associated with the clipped cutting planes 
vertices. Ratios on an edge are linear combinations of the ratios at the ends of 
that edge, and are proportional to the position of the point along the edge. 

For rendering, we first define the RGB value for each clipped cutting plane 
vertex to the ratio ( u  to e in Figure 5) ,  download the low texture tile, and draw 



the polygon. The color values will be interpolated across the polygon, multiplying 
the texture and producing the first weighted image. Next, we download the high 
texture tile, define the RGB value for each clipped cutting plane vertex to one 
minus the ratio, and draw the polygon, producing the second weighted image. 
Finally, by adding the first and second images, we produce the blended result. 

5 Results 

IMandrill (Fin. 611 Visible Female (Fig. 71 I 
Data set resolution i256' RGB T2Dji500' * 250 * RGBAI(3D) 
Data set size I 192K I 238MB 
Tile resolution (high/low) 15'/8' 323/163 
Tile size (high/low) 1024/256 bytes 128K/16K bytes 
Level 0 nodes 324 2601 
Rendered nodes: fixed/MR 324 I 41 443 I 50 
Bytes transmitted 1405KI 51K I56MB I 7MB 
Rendering time 1 - 1  - 12.0 sec.1 0.37 sec. 

I Y I I 

Table 1. Timing results for Mandrill and Visible Female data sets. 

We have implemented the algorithm and applied it to parts of the Visual 
Female data set. The data sets were rendered on an SGI Onyx2 computer system 
with 512MB of main memory and 16MB of texture memory, using a single 
195MHz RlOK processor. 

For comparison, Figure 6 shows a multiresolution image of a Mandrill. This 
image is used to point out the artifacts when not blending across different levels 
of resolution. Image 6(b) shows the nodes and node boundaries: the resolution 
is shown by the node's boundary color, from highest to lowest: black, red, green, 
and yellow; notice the artifacts at the node boundaries in image 6(a). Image 
6(c) shows the blending result, with nearest-neighbor filtering; notice that the 
pixel sizes blend smoothly across the nodes. Image 6(d) shows the final result; 
notice how the image is free of the boundary artifacts and smoothly blends high 
resolution nodes to low resolution nodes. 

Figure 7 shows a multiresolution view of the Visible Female data set. The 443 
nodes of the Visible Female represent the highest-resolution nodes that intersect 
the cutting plane (the other 2158 are never considered). The performance results 
shown in Table 1 are for a single frame; at 20 frames per second. The l.lGB/sec 
required for the non-multiresolution approach exceeds the SGI InfhiteReality 
Engine's maximum transfer rate for textures of 320MB/sec by a factor of about 
3.5, while the 140MB for the multiresolution approach has capacity to spare. 
The selection criteria are flexible and under user control. When the bandwidth 
is very low (e.g., over a modem), even fewer nodes can be selected. 







ASCI ASAP Level-2 Memorandum Agreement B347878 and under Memoran- 
dum Agreement B503159; and the North Atlantic Treaty Organization (NATO) 
under contract CRG.971628 awarded to the University of California, Davis. We 
also acknowledge the support of ALSTOM Schilling Robotics, Chevron, Silicon 
Graphics, Inc. and ST Microelectronics, Inc. We thank the members of the Visu- 
alization Thrust at the Center for Image Processing and Integrated Computing 
(CIPIC) at the University of California, Davis. 

References 

1. Kurt Akeley. RealityEngine graphics. In Proceedings of Siggmph 93, pages 109-116. 
ACM, August 1993. 

2. Brian Cabral, Nancy Cam, and Jim Foran. Accelerated Volume Rendering and To- 
mographic Reconstruction Using Texture Mapping Hardware. In I994 Symposium 
on Volume Visualization, pages 91-98. ACM, October 1994. 

3. Timothy J. Cullip and Wch Neumann. Accelerating Volume Reconstruction With 
3D Texture Hardware. Technical Report TR93-027, Department of Computer 
Science, University of North Carolina - Chapel Hill, May 1994. 

4. George Eckel. OpenGL Volumizer Programmer’s Guide. SGI, Inc., 1998. 
5. Robert Grzeszczuk, Chris Hem, and Roni Yagel. SIGGRAPH ’98 ”Advanced 

Geometric Techniques for Ray Casting Volumes” course notes. ACM, July 1998. 
6. Eric LaMar, Bernd Hamann, and Kenneth I. Joy. Multiresolution Techniques for 

Interactive Hardware Texturing-based Volume Visualization. In IEEE Visualizo- 
tion 99, pages 355-361. IEEE, November 1999. 

7. Tom McReynolds and Davis Blythe. SIGGRAPH ’98 ”Advanced Graphics Pro- 
gmmming Techniques Using OpenGL” course notes. ACM, July 1998. 

8. John S. Montrym, Daniel R. Baum, David L. Dignam, and Christopher J. Migdal. 
Infinite Reality: a Real-Time Graphics System. In Proceedings of Siggraph 97, 
pages 293-302. ACM, August 1997. 

9. Mark Segal and Kurt Akeley. The OpenGL Graphics System: A Specification (Ver- 
sion 1.2). SGI, Inc., 1998. 

10. Han-Wei Shen and Kwan-Liu Ma. A Fast Volume Rendering Algorithm for Time- 
Varying Fields Using A Time-Space Partitioning (TSP) Tree. In IEEE Visualiza- 
tion 99, pages 371-377. IEEE, November 1999. 

11. Allen Van Gelder and Kwansik Kim. Direct Volume Rendering with Shading 
via Three-Dimensional Textures. In Proceesings of 1996 Volume Visualization 
Symposium, pages 23-30. IEEE, October 1996. 

12. Riidiger Westermann and Thomas Ertl. Efficiently Using Graphics Hardware In 
Volume Rendering Applications. In Proceedings of Siggraph 98, pages 169-177. 
ACM, July 1998. 

13. Orion Wilson, Allen Van Gelder, and Jane Wilhelms. Direct Volume Rendering via 
3D Textures. Technical Report UCSCCRL-9419, University of California, Santa 
Cruz, June 1994. 


